Environmental engineering

Environmental engineering is a professional engineering discipline related to environmental science. It encompasses broad scientific topics like chemistry, biology, ecology, geology, hydraulics, hydrology, microbiology, and mathematics to create solutions that will protect and also improve the health of living organisms and improve the quality of the environment.[1][2] Environmental engineering is a sub-discipline of civil engineering and chemical engineering. While on the part of civil engineering, the Environmental Engineering is focused mainly on Sanitary Engineering.[3]

Environmental engineering applies scientific and engineering principles to improve and maintain the environment to protect human health, protect nature's beneficial ecosystems, and improve environmental-related enhancement of the quality of human life.[1] Environmental engineers devise solutions for wastewater management, water and air pollution control, recycling, waste disposal, and public health.[2][4] They design municipal water supply and industrial wastewater treatment systems,[5][6] and design plans to prevent waterborne diseases and improve sanitation in urban, rural and recreational areas. They evaluate hazardous-waste management systems to evaluate the severity of such hazards, advise on treatment and containment, and develop regulations to prevent mishaps. They implement environmental engineering law, as in assessing the environmental impact of proposed construction projects.

Environmental engineers study the effect of technological advances on the environment, addressing local and worldwide environmental issues such as acid rain, global warming, ozone depletion, water pollution and air pollution from automobile exhausts and industrial sources.[2][7][8][9]

Most jurisdictions impose licensing and registration requirements for qualified environmental engineers.[10][11][12]

  1. ^ a b "Careers in Environmental Engineering and Environmental Science". American Academy of Environmental Engineers & Scientists. Archived from the original on 2021-02-24. Retrieved 2019-03-23.
  2. ^ a b c "Architecture and Engineering Occupations". Occupational Outlook Handbook. Bureau of Labor Statistics. 20 February 2019. Retrieved 23 March 2019.
  3. ^ Mahamud-López, Manuel María; Menéndez-Aguado, Juan Mariá (September 2005). "Environmental engineering in mining engineering education". European Journal of Engineering Education. 30 (3): 329–339. doi:10.1080/03043790500114490. ISSN 0304-3797. S2CID 109093239.
  4. ^ "10 Advancements in Environmental Engineering". HowStuffWorks. 2014-05-18. Retrieved 2019-03-23.
  5. ^ Beychok, Milton R. (1967). Aqueous Wastes from Petroleum and Petrochemical Plants (1st ed.). John Wiley & Sons. LCCN 67019834.
  6. ^ Tchobanoglous, G.; Burton, F.L. & Stensel, H.D. (2003). Wastewater Engineering (Treatment Disposal Reuse) / Bailey Alatoree Inc (4th ed.). McGraw-Hill Book Company. ISBN 978-0-07-041878-3.
  7. ^ Turner, D.B. (1994). Workbook of atmospheric dispersion estimates: an introduction to dispersion modeling (2nd ed.). CRC Press. ISBN 978-1-56670-023-8.
  8. ^ Beychok, M.R. (2005). Fundamentals Of Stack Gas Dispersion (4th ed.). author-published. ISBN 978-0-9644588-0-2.
  9. ^ Career Information Center. Agribusiness, Environment, and Natural Resources (9th ed.). Macmillan Reference. 2007.
  10. ^ "Become Board Certified in Environmental Engineering". American Academy of Environmental Engineers & Scientists. Archived from the original on 2021-01-18. Retrieved 2019-03-23.
  11. ^ "NCEES PE Environmental exam information". NCEES. Retrieved 2019-03-23.
  12. ^ "Professional Engineering Institutions". Engineering Council. Retrieved 2019-03-23.

Developed by StudentB